论文标题

较弱监督语义分割的采矿跨图像语义

Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation

论文作者

Sun, Guolei, Wang, Wenguan, Dai, Jifeng, Van Gool, Luc

论文摘要

本文仅从图像级监督学习语义细分的问题。当前的流行解决方案利用分类器作为监督信号的对象本地化图,并难以使本地化图捕获更完整的对象内容。我们没有以前主要关注图像信息信息的努力,而是解决跨图像语义关系对综合对象模式挖掘的价值。为了实现这一目标,将两个神经共同发作纳入分类器中,以恰当地捕获跨图像的语义相似性和差异。特别是,给出了一对训练图像,一个共同发项将分类器从共同的对象中识别出常见的语义,而另一个称为“对比的共同注意事件”,驱动分类器驱动分类器以识别其余对象的未共享语义。这有助于分类器在图像区域发现更多对象模式和更好的地面语义。除了增强对象模式学习外,共同发明还可以利用其他相关图像的上下文来改善本地化图的推断,因此最终使语义细分学习受益。更重要的是,我们的算法提供了一个统一的框架,该框架可以处理不同的WSSS设置,即使用(1)仅(1)精确的图像级监督学习WSSS,(2)额外的简单单标签数据,以及(3)额外的噪声网络数据。它在所有这些设置上设定了新的最新技术,表明其功效和概括性。此外,我们的方法在CVPR2020学习不完美的数据挑战中学习的弱监督语义细分曲目中排名第一。

This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complimentarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unshared semantics from the rest, uncommon objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More essentially, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with (1) precise image-level supervision only, (2) extra simple single-label data, and (3) extra noisy web data. It sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源