论文标题
单原子验证量子水平不可逆性的信息理论结合
Single-Atom Verification of the Information-Theoretical Bound of Irreversibility at the Quantum Level
论文作者
论文摘要
基于熵产生的疾病或随机性的定量度量表征了热力学不可逆性,这与传统的热力学第二定律有关。在这里,我们以量子机械方式报告了对熵生产的信息理论结合的第一个理论预测和实验探索。我们的理论模型由由纯粹的经典领域驱动的最简单的两级耗散系统组成,在马尔可夫耗散的情况下,我们发现这种信息理论结合,而不是完全验证量子放松过程,这在很大程度上取决于开车与周期比率和初始状态。此外,我们对此信息理论进行了实验验证,该验证通过嵌入在超低捕获的$^{40} $ ca $^{+} $ ion中的单个旋转限制。我们的发现基于两级模型,是任何量子热力学过程的基础,并且表明量子热力学相对于常规经典的对应物的差异和复杂性很大。
Quantitative measure of disorder or randomness based on the entropy production characterizes thermodynamical irreversibility, which is relevant to the conventional second law of thermodynamics. Here we report, in a quantum mechanical fashion, the first theoretical prediction and experimental exploration of an information-theoretical bound on the entropy production. Our theoretical model consists of a simplest two-level dissipative system driven by a purely classical field, and under the Markovian dissipation, we find that such an information-theoretical bound, not fully validating quantum relaxation processes, strongly depends on the drive-to-decay ratio and the initial state. Furthermore, we carry out experimental verification of this information-theoretical bound by means of a single spin embedded in an ultracold trapped $^{40}$Ca$^{+}$ ion. Our finding, based on a two-level model, is fundamental to any quantum thermodynamical process and indicates much difference and complexity in quantum thermodynamics with respect to the conventionally classical counterpart.