论文标题
平烷 - 用于氢存储,呼吸和扭结的材料
Graphane -- material for hydrogen storage, breathers and kinks
论文作者
论文摘要
在本文中,我们研究石墨烷。使用了六角形晶格上的Frenkel-Kontorova模型。我们研究了石墨烷平面上C原子上方一个H原子的情况(我们使用了平面中的六边形晶格的近似)。 Lagrange-euler方程的连续限制是从哈密顿式的$ H $ ATOMS运动发现的,它们使我们能够在$ C $飞机上方的$ H $飞机中学习扭结和呼吸激发。我们发现,当$ h $ 1 $的一个$ h $ ATOM运动中有三个案例,当$ h $ atom的位置低于其被解吸的位置时。然后描述了这个$ h $ atom的动作$ t_ {h} $。 $ 2 $,当$ h $ atom处于被抑制原子$ h $的位置时,在$ c $(接近)原子方向上。该$ H $ ATOM将与石墨烷中的最小势能解脱,然后再通过解吸点。描述了它的时间$ t_ {h} $。当$ h $ ATOM接近势能最小的小振荡位置时,CASE $ 3 $。在$ t_ {0} $时,原子$ h $的位置是原子$ h $对外力感到兴奋的位置。正弦方程的扭结解决方案所述,可能会激发$ H $原子的晶格。扭结具有其速度$ u $,$ u^{2} <1 $,并且在时代$ t $和$ x^{'} $坐标方向定位。正弦方程在$ x^{'} $方向上具有呼气解决方案。 $ω$是呼吸器的频率,$ t_ {0} $,$ x^{'} _ {0} $是及时$ t $,in $ x^{'} $方向本地化。
In this paper we study the graphane. The Frenkel-Kontorova model on hexagonal lattice was used. We studied the case of one H atom above the C atom in the plane of graphane (we used the approximation of the hexagonal lattice in the plane). Continuous limit of the Lagrange-Euler equations is found from the Hamiltonian for $H$ atoms motion, they enabled us to study kink and breather excitations of $H$ atoms in the $H$ plane above the $C$ plane. We have found that there are three cases in the one $H$ atom motion The case $1$, when the $H$ atom is at the position which is below the position at which it is desorbed. Then the motion of this $H$ atom at time $t_{h}$ is described. The case $2$, when the $H$ atom is at the position of the suppressed atom $H$ in the direction to the $C$ (nearer) atom. This $H$ atom will be desorbed from the graphane going through the minimum of the potential energy and then through the point of desorption. Its motion of at time $t_{h}$ is described. The case $3$, when the $H$ atom is near the position of small oscillations near the potential energy minimum. The position of the atom $H$ at the time $t_{0}$ is the position to which the atom $H$ was excited with external force. The lattice of $H$ atoms in graphane may be excited as described by the kink solution of the Sine-Gordon equation. The kink has its velocity $U$, $ U^{2} < 1$, and in time $T$ and in $X^{'}$ coordinate direction localization. The Sine-Gordon equation has the breather solution in the $X^{'}$ direction. There $ω$ is the frequency of the breather, $T_{0}$ and $X^{'}_{0}$ are in time $T$ and in $X^{'}$ direction localization.