论文标题
通过图形预测COVID-19的潜在药物靶标和可再现药物。
Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs
论文作者
论文摘要
2019年冠状病毒病(Covid-19)一直在创造全球大流行状况。重新利用药物,已经证明没有有害的副作用,用于治疗Covid-19患者是启动新型治疗策略的重要选择。因此,可靠的分子相互作用数据是关键的基础,在该基础上,药物/蛋白质 - 蛋白质相互作用网络建立了宝贵的,长达一年的精心策划的数据资源。但是,这些资源尚未使用高性能人工智能方法系统地利用这些资源。在这里,我们结合了三个网络,其中两个是长达一年的策划,其中一个是在SARS-COV-2-HUMAN宿主病毒蛋白相互作用上出版的,仅在最近发布(2020年4月30日)才出版,这提出了一个新颖的网络,将药物,人类和病毒蛋白放入相互的环境中。我们应用变分图自动编码器(VGAE),代表最先进的基于深度学习的方法,用于分析受网络约束的数据。可靠的模拟确认我们在预测缺失链接方面非常准确地运行。然后,我们预测迄今为止,药物与人类蛋白质与病毒蛋白优选结合的未知联系。相应的治疗剂提出了出色的起点,用于探索新型宿主定向治疗(HDT)选项。
Coronavirus Disease 2019 (COVID-19) has been creating a worldwide pandemic situation. Repurposing drugs, already shown to be free of harmful side effects, for the treatment of COVID-19 patients is an important option in launching novel therapeutic strategies. Therefore, reliable molecule interaction data are a crucial basis, where drug-/protein-protein interaction networks establish invaluable, year-long carefully curated data resources. However, these resources have not yet been systematically exploited using high-performance artificial intelligence approaches. Here, we combine three networks, two of which are year-long curated, and one of which, on SARS-CoV-2-human host-virus protein interactions, was published only most recently (30th of April 2020), raising a novel network that puts drugs, human and virus proteins into mutual context. We apply Variational Graph AutoEncoders (VGAEs), representing most advanced deep learning based methodology for the analysis of data that are subject to network constraints. Reliable simulations confirm that we operate at utmost accuracy in terms of predicting missing links. We then predict hitherto unknown links between drugs and human proteins against which virus proteins preferably bind. The corresponding therapeutic agents present splendid starting points for exploring novel host-directed therapy (HDT) options.