论文标题
使用部分空间相干的光学相干显微镜和深神经网络的定量相成像中的高空间宽度
High space-bandwidth in quantitative phase imaging using partially spatially coherent optical coherence microscopy and deep neural network
论文作者
论文摘要
定量相显微镜(QPM)是一种无标签的技术,可以监测亚细胞水平的形态变化。 QPM系统在空间敏感性和分辨率方面的性能取决于光源的相干性能和目标镜头的数值孔径(NA)。在这里,我们提出了使用深层神经网络辅助的部分相干光学相干显微镜(PSC-OCM)的高空间宽度QPM。 PSC源合成以提高干涉图像重建相位图的空间灵敏度。此外,使用配对的低分辨率(LR)和从PSC-OCM系统中获取的配对低分辨率(LR)和高分辨率(HR)数据集使用兼容生成对抗网络(GAN)。网络的训练是对两种不同类型的样品进行的训练,即主要是同质的人类红细胞(RBC)和高度异质巨噬细胞。通过预测使用低Na镜头捕获的数据集的HR图像并与实际HR相位图像进行比较来评估性能。 RBC和巨噬细胞数据集证明了空间带宽产品的9倍。我们认为,通过利用光源的纵向空间相干性能,PSC-OCM+GAN方法将适用于单发标签的无组织成像,疾病分类和其他高分辨率断层扫描应用。
Quantitative phase microscopy (QPM) is a label-free technique that enables to monitor morphological changes at subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth QPM using partially spatially coherent optical coherence microscopy (PSC-OCM) assisted with deep neural network. The PSC source synthesized to improve the spatial sensitivity of the reconstructed phase map from the interferometric images. Further, compatible generative adversarial network (GAN) is used and trained with paired low-resolution (LR) and high-resolution (HR) datasets acquired from PSC-OCM system. The training of the network is performed on two different types of samples i.e. mostly homogenous human red blood cells (RBC) and on highly heterogenous macrophages. The performance is evaluated by predicting the HR images from the datasets captured with low NA lens and compared with the actual HR phase images. An improvement of 9 times in space-bandwidth product is demonstrated for both RBC and macrophages datasets. We believe that the PSC-OCM+GAN approach would be applicable in single-shot label free tissue imaging, disease classification and other high-resolution tomography applications by utilizing the longitudinal spatial coherence properties of the light source.