论文标题

EDSL:具有符号级特征的编码器架构,用于印刷数学表达式识别

EDSL: An Encoder-Decoder Architecture with Symbol-Level Features for Printed Mathematical Expression Recognition

论文作者

Fu, Yingnan, Liu, Tingting, Gao, Ming, Zhou, Aoying

论文摘要

印刷数学表达识别(PMER)旨在将印刷的数学表达图像转录为结构表达,例如乳胶表达。对于许多应用程序而言,这是一项至关重要的任务,包括自动问题建议,自动解决问题和对学生的分析等。因此,这些方法可以在解决MER问题的情况下次优。 在本文中,我们提出了一种名为EDSL的新方法,该方法缩短了具有符号级特征的编码器,以识别图像中的印刷数学表达式。 EDSL的符号级图像编码器由分割模块和重建模块组成。通过执行分割模块,我们以无监督的方式从图像中识别所有符号及其空间信息。然后,我们设计了一个新颖的重建模块,以在符号分割后恢复符号依赖性。特别是,我们采用位置校正注意机制来捕获符号之间的空间关系。为了减轻长输出的负面影响,我们应用了变压器模型将编码的图像转录为顺序和结构输出。我们在两个实际数据集上进行了广泛的实验,以验证我们提出的EDSL方法的有效性和合理性。实验结果表明,EDSL在评估度量匹配中达到了92.7 \%和89.0 \%,比最先进的方法高3.47 \%和4.04 \%。我们的代码和数据集可在https://github.com/abcanonymon/edsl上找到。

Printed Mathematical expression recognition (PMER) aims to transcribe a printed mathematical expression image into a structural expression, such as LaTeX expression. It is a crucial task for many applications, including automatic question recommendation, automatic problem solving and analysis of the students, etc. Currently, the mainstream solutions rely on solving image captioning tasks, all addressing image summarization. As such, these methods can be suboptimal for solving MER problem. In this paper, we propose a new method named EDSL, shorted for encoder-decoder with symbol-level features, to identify the printed mathematical expressions from images. The symbol-level image encoder of EDSL consists of segmentation module and reconstruction module. By performing segmentation module, we identify all the symbols and their spatial information from images in an unsupervised manner. We then design a novel reconstruction module to recover the symbol dependencies after symbol segmentation. Especially, we employ a position correction attention mechanism to capture the spatial relationships between symbols. To alleviate the negative impact from long output, we apply the transformer model for transcribing the encoded image into the sequential and structural output. We conduct extensive experiments on two real datasets to verify the effectiveness and rationality of our proposed EDSL method. The experimental results have illustrated that EDSL has achieved 92.7\% and 89.0\% in evaluation metric Match, which are 3.47\% and 4.04\% higher than the state-of-the-art method. Our code and datasets are available at https://github.com/abcAnonymous/EDSL .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源