论文标题
杂种VO2中的亚皮秒全光开关:1550 nm的硅波导
Sub-picosecond all-optical switching in a hybrid VO2:silicon waveguide at 1550 nm
论文作者
论文摘要
在硅波导几何形状中实现超快的全光开关是通往一个集成平台的关键里程碑,能够处理对更高速度和更高信息传输能力的增加需求。鉴于硅中的电磁和热光电效应弱,人们对混合结构引起了浓厚的兴趣,在这种杂交结构中,可以通过将另一种材料整合到波导中,包括相变材料,二氧化钒(VO2)来实现该切换。长期以来,已经知道,VO2中的相变可以由超快激光脉冲触发,并且泵激光脉冲是一个关键的参数,该参数管理了由700 nm附近的飞秒激光脉冲照射的薄膜的恢复时间。但是,由于电信带中Vo2光学常数发生了巨大变化,因此使用VO2进行全光硅光照射器中的全光开关并不是先验的可靠指南,这是对低插入损失的需求,以及在集成光子系统中允许转换能量的限制。在这里,我们报告了第一个测量值,以表明可以利用可逆的,超快的光诱导的VO2中的相变,以实现小vo2体积作为调节元件的硅波导中的小vo2量。超过阈值的开关能量为600 FJ/开关。这些结果表明,现在可以将VO2作为次秒开关时间的全辐射切换的有力候选者。
Achieving ultrafast all-optical switching in a silicon waveguide geometry is a key milestone on the way to an integrated platform capable of handling the increasing demands for higher speed and higher capacity for information transfer. Given the weak electro-optic and thermo-optic effects in silicon, there has been intense interest in hybrid structures in which that switching could be accomplished by integrating another material into the waveguide, including the phase-changing material, vanadium dioxide (VO2). It has long been known that the phase transition in VO2 can be triggered by ultrafast laser pulses, and that pump-laser fluence is a critical parameter governing the recovery time of thin films irradiated by femtosecond laser pulses near 800 nm. However, thin-film experiments are not a priori reliable guides to using VO2 for all-optical switching in on-chip silicon photonics because of the large changes in VO2 optical constants in the telecommunications band, the requirement of low insertion loss, and the limits on switching energy permissible in integrated photonic systems. Here we report the first measurements to show that the reversible, ultrafast photo-induced phase transition in VO2 can be harnessed to achieve sub-picosecond switching when small VO2 volumes are integrated in a silicon waveguide as a modulating element. Switching energies above threshold are of order 600 fJ/switch. These results suggest that VO2 can now be pursued as a strong candidate for all-optical switching with sub-picosecond on-off times.