论文标题
粒状剪切带中的微型滑动作为纳米磨牙
Micro-slips inside a granular shear band as nano-earthquakes
论文作者
论文摘要
我们通过实验研究沿着压缩摩擦颗粒培养基内自然出现的剪切断层变形的波动。使用激光干涉测量法,我们表明该颗粒岩内的变形是作为一系列沿断层分布的局部微扫描而发生的。释放的地震力矩,应变波动中的记忆效应以及连续事件之间的时间相关性的相关分布完全遵循自然地震的经验定律。我们使用最初在地震学和社会科学上开发的方法,这是第一次在实验室规模的基本因果结构上揭示。这表明滑动动力学的时空相关性有效地从更基本的触发内核中出现。自然断层与我们实验可控的颗粒剪切带之间的这种形式类比为更好地理解地震物理学开辟了道路。特别是,比较在不同强加的变形速率下进行的实验,我们表明应变而非时间是正确的参数,该参数控制了故障类似物的动力学中的记忆效应。这就提出了一个基本问题,即在断层岩石中菌株依赖性结构重排的相对作用,而在自然地震性的时空相关性的出现中,与真正时间依赖的,热激活的过程相关。
We study experimentally the fluctuations of deformation along a shear fault naturally emerging within a compressed frictional granular medium. Using laser interferometry, we show that the deformation inside this granular gouge occurs as a succession of localized micro-slips distributed along the fault. The associated distributions of released seismic moments, the memory effects in strain fluctuations, as well as the time correlations between successive events, follow exactly the empirical laws of natural earthquakes. Using a methodology initially developed in seismology and social science, we reveal, for the first time at the laboratory scale, the underlying causal structure. This demonstrates that the spatio-temporal correlations of the slip dynamics effectively emerge from more fundamental triggering kernels. This formal analogy between natural faults and our experimentally controllable granular shear band opens the way towards a better understanding of earthquake physics. In particular, comparing experiments performed under different imposed deformation rates, we show that strain, not time, is the right parameter controlling the memory effects in the dynamics of our fault analog. This raises the fundamental question of the relative roles of strain-dependent structural rearrangements within the fault gouge vs that of truly time-dependent, thermally activated processes, in the emergence of spatio-temporal correlations of natural seismicity.