论文标题

模糊积分=上下文线性顺序统计

Fuzzy Integral = Contextual Linear Order Statistic

论文作者

Anderson, Derek, Deardorff, Matthew, Havens, Timothy, Kakula, Siva, Wilkin, Timothy, Islam, Muhammad, Pinar, Anthony, Buck, Andrew

论文摘要

模糊积分是一个强大的参数非线函数,在各种应用中,从信息融合到分类,回归,决策,插值,指标,形态等等。虽然模糊积分通常是非线性运算符,但本文我们表明它可以由一组上下文线性订单统计(LOS)表示。可以通过采样模糊度量来获得这些操作员,并使用聚类来生成线性凸出总和的基础空间的分区。我们方法的好处包括可伸缩性,改进的积分/措施获取,可推广性和可解释/可解释的模型。我们的方法都在受控的合成实验上证明,并且还通过实际基准数据集进行了分析和验证。

The fuzzy integral is a powerful parametric nonlin-ear function with utility in a wide range of applications, from information fusion to classification, regression, decision making,interpolation, metrics, morphology, and beyond. While the fuzzy integral is in general a nonlinear operator, herein we show that it can be represented by a set of contextual linear order statistics(LOS). These operators can be obtained via sampling the fuzzy measure and clustering is used to produce a partitioning of the underlying space of linear convex sums. Benefits of our approach include scalability, improved integral/measure acquisition, generalizability, and explainable/interpretable models. Our methods are both demonstrated on controlled synthetic experiments, and also analyzed and validated with real-world benchmark data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源