论文标题

Schwarzschild和Shell SpaceTime中的收获相关性

Harvesting correlations in Schwarzschild and collapsing shell spacetimes

论文作者

Tjoa, Erickson, Mann, Robert B.

论文摘要

我们研究了两个unruh-dewitt静态检测器从无质量标量场中的真空状态的两个Unruh-dewitt静态检测器中的相关性的收获,该探测器由瓦迪亚(Vaidya)时空中的无质量标量场的真空状态组成,由折叠的无效外壳组成,形成了schwarzschild black hole(以下是vaidya spacetime for Brevity),并且与三个与三个相关的结果相比,永恒的Schwarzschild黑洞时空的Hartle-Hawking-Israel真空。为此,我们利用了(1+1)折叠时空和Schwarzschild SpaceTimes的(1+1)尺寸模型中可用的无质量标量字段的显式Wightman函数,而检测器将其与适当的时间衍生物相对。首先,我们发现,关于收获方案,即使在有限的时间相互作用方面,Unruh真空也与地平线附近的Vaidya真空非常吻合。其次,所有四个真空吸尘器都具有不同的能力,可以在检测器之间建立相关性,而Vaidya真空吸尘器在地平线附近的Unruh真空与远离地平线的Boulware真空之间进行了插值。第三,我们表明黑洞的地平线抑制\ textit {any}相关性,而不仅仅是纠缠。最后,我们表明收获方案的效率在很大程度上取决于检测器的信号传导能力,该检测器在存在曲率的情况下高度不平凡。我们提供对Vaidya真空的渐近分析,以阐明Boulware/Unruh插值与近/远离地平线和早期/延迟时间限制之间的关系。我们演示了数值轮廓集成的直接实现,以执行所有计算。

We study the harvesting of correlations by two Unruh-DeWitt static detectors from the vacuum state of a massless scalar field in a background Vaidya spacetime consisting of a collapsing null shell that forms a Schwarzschild black hole (hereafter Vaidya spacetime for brevity), and we compare the results with those associated with the three preferred vacua (Boulware, Unruh, Hartle-Hawking-Israel vacua) of the eternal Schwarzschild black hole spacetime. To do this we make use of the explicit Wightman functions for a massless scalar field available in (1+1)-dimensional models of the collapsing spacetime and Schwarzschild spacetimes, and the detectors couple to the proper time derivative of the field. First we find that, with respect to the harvesting protocol, the Unruh vacuum agrees very well with the Vaidya vacuum near the horizon even for finite-time interactions. Second, all four vacua have different capacities for creating correlations between the detectors, with the Vaidya vacuum interpolating between the Unruh vacuum near the horizon and the Boulware vacuum far from the horizon. Third, we show that the black hole horizon inhibits \textit{any} correlations, not just entanglement. Finally, we show that the efficiency of the harvesting protocol depend strongly on the signalling ability of the detectors, which is highly non-trivial in presence of curvature. We provide an asymptotic analysis of the Vaidya vacuum to clarify the relationship between the Boulware/Unruh interpolation and the near/far from horizon and early/late-time limits. We demonstrate a straightforward implementation of numerical contour integration to perform all the calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源