论文标题
用最大纠缠状态实现海森堡缩放:可达到的均方根误差的分析上限
Achieving Heisenberg scaling with maximally entangled states: an analytic upper bound for the attainable root mean square error
论文作者
论文摘要
在本文中,我们探讨了通过仅采用最大纠缠的状态来执行一个阶段的海森堡有限量子计量学的可能性。从Higgins等人引入的估计器开始。在新的J. Phys。 11,073023(2009),本文的主要结果是在相关的平方误差上产生一个分析上限,该均方根误差是单调降低的,这是该过程中使用的量子探针数量的函数。分析的方案是非自适应的,因此原则上需要(对于可区分的探针)仅可分开的测量。我们还探索了对纠缠大小和损失存在的局限性的计量学。
In this paper we explore the possibility of performing Heisenberg limited quantum metrology of a phase, without any prior, by employing only maximally entangled states. Starting from the estimator introduced by Higgins et al. in New J. Phys. 11, 073023 (2009), the main result of this paper is to produce an analytical upper bound on the associated Mean Squared Error which is monotonically decreasing as a function of the square of the number of quantum probes used in the process. The analysed protocol is non-adaptive and requires in principle (for distinguishable probes) only separable measurements. We explore also metrology in presence of a limitation on the entanglement size and in presence of loss.