论文标题

成本敏感的多级adaboost,用于了解远程信息处理的驾驶行为

Cost-sensitive Multi-class AdaBoost for Understanding Driving Behavior with Telematics

论文作者

So, Banghee, Boucher, Jean-Philippe, Valdez, Emiliano A.

论文摘要

在远程信息处理技术的启动下,保险公司现在可以捕获广泛的数据,例如旅行的距离,驾驶员如何制动,加速或转弯以及每周的旅行频率,以更好地解码驾驶员的行为。此类附加信息可以帮助保险公司改善基于使用率的保险(UBI)的风险评估,这是一种日益流行的行业创新。在本文中,我们探讨了如何整合远程信息处理信息以更好地预测主张频率。对于一年中的汽车保险,我们通常会观察到很大一部分的驾驶员,索赔零的比例较小,一份索赔的比例较低,而索赔的较小却要少得多。我们介绍了使用成本敏感的多级自适应增强(Adaboost)算法的使用,我们称之为Samme.c2来处理这种不平衡。为了校准samme.c2算法,我们使用加拿大远程信息处理计划收集的经验数据,并发现相对于传统风险变量,对远程信息处理的驾驶行为的评估得到了改进。我们演示了我们的算法可以胜过其他可以处理类失衡的模型:Samme,Samme带有Smote,Rusboost和SmoteBoost。对远程信息处理的采样数据是2013 - 2016年期间的观察结果,其中50,301次用于训练,另外21,574次进行测试。从广义上讲,从车辆远程信息处理中得出的其他信息有助于完善UBI驱动因素的风险分类。

Powered with telematics technology, insurers can now capture a wide range of data, such as distance traveled, how drivers brake, accelerate or make turns, and travel frequency each day of the week, to better decode driver's behavior. Such additional information helps insurers improve risk assessments for usage-based insurance (UBI), an increasingly popular industry innovation. In this article, we explore how to integrate telematics information to better predict claims frequency. For motor insurance during a policy year, we typically observe a large proportion of drivers with zero claims, a less proportion with exactly one claim, and far lesser with two or more claims. We introduce the use of a cost-sensitive multi-class adaptive boosting (AdaBoost) algorithm, which we call SAMME.C2, to handle such imbalances. To calibrate SAMME.C2 algorithm, we use empirical data collected from a telematics program in Canada and we find improved assessment of driving behavior with telematics relative to traditional risk variables. We demonstrate our algorithm can outperform other models that can handle class imbalances: SAMME, SAMME with SMOTE, RUSBoost, and SMOTEBoost. The sampled data on telematics were observations during 2013-2016 for which 50,301 are used for training and another 21,574 for testing. Broadly speaking, the additional information derived from vehicle telematics helps refine risk classification of drivers of UBI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源