论文标题
分散的政策学习,具有部分观察和机械限制的多人物建模
Decentralized policy learning with partial observation and mechanical constraints for multiperson modeling
论文作者
论文摘要
在各种科学和工程领域中,提取现实世界中的多国行为规则是当前的挑战。生物剂独立观察和机械限制有限。但是,大多数传统数据驱动的模型都忽略了此类假设,从而导致缺乏生物学合理性和对行为分析的解释性模型。在这里,我们以分散的方式提出了具有部分观察和机械约束的顺序生成模型,该模型可以对代理的认知和身体动力学进行建模,并预测生物学上合理的行为。我们将其作为分散的多名模仿学习问题,利用二元部分观察和基于层次变异的复发性神经网络利用二元部分观察和分散的策略模型,并具有物理和生物力学惩罚。使用现实世界中的篮球和足球数据集,我们在违反约束,长期轨迹预测和部分观察方面展示了我们方法的有效性。我们的方法可以用作使用现实世界数据生成逼真的轨迹的多代理模拟器。
Extracting the rules of real-world multi-agent behaviors is a current challenge in various scientific and engineering fields. Biological agents independently have limited observation and mechanical constraints; however, most of the conventional data-driven models ignore such assumptions, resulting in lack of biological plausibility and model interpretability for behavioral analyses. Here we propose sequential generative models with partial observation and mechanical constraints in a decentralized manner, which can model agents' cognition and body dynamics, and predict biologically plausible behaviors. We formulate this as a decentralized multi-agent imitation-learning problem, leveraging binary partial observation and decentralized policy models based on hierarchical variational recurrent neural networks with physical and biomechanical penalties. Using real-world basketball and soccer datasets, we show the effectiveness of our method in terms of the constraint violations, long-term trajectory prediction, and partial observation. Our approach can be used as a multi-agent simulator to generate realistic trajectories using real-world data.