论文标题

学习模型的盲目暂时性代言人没有地面真理

Learning Model-Blind Temporal Denoisers without Ground Truths

论文作者

Li, Yanghao, Guo, Bichuan, Wen, Jiangtao, Xia, Zhen, Liu, Shan, Han, Yuxing

论文摘要

接受合成数据训练的Denoisers通常无法应付未知噪声的多样性,让位于可以适应现有噪声的方法而不知道其地面真相的方法。先前基于图像的方法会导致噪声过度拟合,如果直接应用于视频Deoisiser,并且时间信息管理不足,尤其是在遮挡和照明变化方面,这极大地阻碍了其deno的性能。在本文中,我们提出了一个通用框架,以成功解决这些挑战的视频denoing网络。一个新颖的双样本采样器通过从目标中解开输入而不改变语义来组装训练数据,这不仅可以有效地解决噪声过度拟合问题,而且还通过检查光流量一致性而有效地产生了更好的闭塞掩模。在线剥夺计划和扭曲损失正常化程序用于更好的时间对齐。根据对齐帧的局部相似性来量化照明变化。在多个噪声,数据集和网络体系结构上,我们的方法一致地优于先前的ART。减少模型盲视频噪音的最新结果。进行了广泛的消融研究,以证明每个技术组成部分的重要性。

Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises, giving way to methods that can adapt to existing noise without knowing its ground truth. Previous image-based method leads to noise overfitting if directly applied to video denoisers, and has inadequate temporal information management especially in terms of occlusion and lighting variation, which considerably hinders its denoising performance. In this paper, we propose a general framework for video denoising networks that successfully addresses these challenges. A novel twin sampler assembles training data by decoupling inputs from targets without altering semantics, which not only effectively solves the noise overfitting problem, but also generates better occlusion masks efficiently by checking optical flow consistency. An online denoising scheme and a warping loss regularizer are employed for better temporal alignment. Lighting variation is quantified based on the local similarity of aligned frames. Our method consistently outperforms the prior art by 0.6-3.2dB PSNR on multiple noises, datasets and network architectures. State-of-the-art results on reducing model-blind video noises are achieved. Extensive ablation studies are conducted to demonstrate the significance of each technical components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源