论文标题
了解克利福德和格拉斯曼空间中费米子的第二次量化 - 第一部分的第二次量化方式,第一部分
Understanding the second quantization of fermions in Clifford and in Grassmann space -- New way of second quantization of fermions, Part I
论文作者
论文摘要
代数,克利福德(Clifford)和格拉斯曼(Grassmann)都提供了“基础向量”,以描述内部费米斯的自由度。 “基础矢量”的奇怪性转移到了创建操作员,它们是有限数量的“基础向量”和无限的动量基础数量的张量,以及他们的Hermitian共轭合作伙伴歼灭操作员,提供了第二次量化费米,而无需宣布迪拉克的条件,以解释了dirac的文章。但是,尽管克利福德·费米(Clifford Fermions)表现出半整数旋转 - 与观察到的夸克,瘦素和古quark和抗卵形的特性一致,但“ Grassmann fermions”表现出整数旋转。在第一部分中,提出了整数旋转的创建和an灭操作员的特性,并提出了拟议的运动方程式。当应用真空状态以及应用于无限数量的“ Slater决定因素”的希尔伯特空间时,显示了第二个量化整数自旋费物的反通信关系,并具有空为空和占据的“ fermion态”的所有可能性。在第二部分中,讨论了Clifford代数提供第二个量化费米子的外观的条件,从而使家庭出现。在这两个部分,第一部分和第二部分中,都提出了狄拉克方式与我们的第二次量化方式之间的关系。
Both algebras, Clifford and Grassmann, offer "basis vectors" for describing the internal degrees of freedom of fermions. The oddness of the "basis vectors", transferred to the creation operators, which are tensor products of the finite number of "basis vectors" and the infinite number of momentum basis, and to their Hermitian conjugated partners annihilation operators, offers the second quantization of fermions without postulating the conditions proposed by Dirac, enabling the explanation of the Dirac's postulates. But while the Clifford fermions manifest the half integer spins -- in agreement with the observed properties of quarks and leptons and antiquarks and antileptons -- the "Grassmann fermions" manifest the integer spins. In Part I properties of the creation and annihilation operators of integer spins "Grassmann fermions" are presented and the proposed equations of motion solved. The anticommutation relations of second quantized integer spin fermions are shown when applying on the vacuum state as well as when applying on the Hilbert space of the infinite number of "Slater determinants" with all the possibilities of empty and occupied "fermion states". In Part II the conditions are discussed under which the Clifford algebras offer the appearance of the second quantized fermions, enabling as well the appearance of families. In both parts, Part I and Part II, the relation between the Dirac way and our way of the second quantization of fermions is presented.