论文标题
Wheeler-Dewitt方程中的永恒通货膨胀
Eternal inflation in light of Wheeler-DeWitt equation
论文作者
论文摘要
Wheeler-Dewitt方程提供了曲率扰动的概率分布,即量规的量规量子波动。由此,我们可以找到一种用扰动方法找到的电源谱。由于跨越地平线的模式的功率谱有助于经典的流动量位移的不确定性,因此我们获得了永恒通货膨胀的新条件。在较高激发中存在斑块的情况下,允许永恒通货膨胀的慢速参数上的结合最多由$ε\ sillesim(2n+1)(2n+1)(h/m _ {\ rm pl})^2 $带有$ n $ integer,指示量子数将激发标记为量子数。对于大$ n $,$ε$的限制是放松的,因此可以以更大的$ε$进行永恒的通货膨胀。尽管热力学的第二定律意味着$ n = 0 $状态是首选的,但我们不能忽略如此大的$ n $效应,因为非线性互动引起了$ n = 0 $状态的过渡。
The Wheeler-DeWitt equation provides the probability distribution for the curvature perturbation, the gauge invariant quantum fluctuation of the inflaton. From this, we can find a tower of power spectra which is not found in a perturbative approach. Since the power spectrum for the modes that cross the horizon contributes to the uncertainty in the classical inflaton displacement, we obtain new conditions for eternal inflation. In the presence of the patch in the higher excitations, the bound on the slow-roll parameter allowing eternal inflation is given by at most $ε\lesssim (2n+1)(H/m_{\rm Pl})^2$ with $n$ integer indicating the quantum number labelling the excitation. For large $n$, the bound on $ε$ is relaxed such that eternal inflation can take place with even larger value of $ε$. While the second law of thermodynamics implies that $n=0$ state is preferred, we cannot ignore such large $n$ effect since the nonlinear interaction inducing transitions to the $n=0$ state is suppressed.