论文标题
安全分布式矩阵计算,具有离散的傅立叶变换
Secure Distributed Matrix Computation with Discrete Fourier Transform
论文作者
论文摘要
我们考虑安全分布式矩阵计算(SDMC)的问题,其中\ textit {user}查询在分布式\ textit {source}节点上生成的数据矩阵的函数。我们假设通过正交和可靠的通信链接连接到来源,用户以及彼此之间的$ n $诚实但好奇的计算服务器。我们的目标是最大程度地减少必须从源传输到服务器的数据量,称为\ textIt {上传成本},同时保证没有$ t $ culluding服务器可以学习有关源矩阵的任何信息,并且用户无法在计算结果以外学习任何信息。我们首先专注于考虑两个矩阵的安全分布式矩阵乘法(SDMM),并使用有限场离散傅立叶变换的属性提出了一种新颖的多项式编码方案,该方案的上载成本大于文献中现有的结果。然后,我们将提出的方案推广,以包括散曲板缓解措施,并在保持输入矩阵的同时,在多个矩阵中乘以乘法,中间计算结果以及最终结果可与任何$ t $ colduding服务器相对安全。我们还考虑了一种特殊情况,称为具有自己的数据的计算,其中用于计算的数据矩阵属于用户。在这种情况下,我们删除了针对用户的安全要求,并证明所提出的方案可实现最小的上传成本。然后,我们提出了在分布式服务器上安全执行其他常见矩阵计算的方法,包括更改秘密共享的参数,矩阵转置,矩阵指示,求解线性系统和矩阵倒置,然后将其用于使用分配的服务器,以显示如何安全地计算出任意的矩阵综合物。
We consider the problem of secure distributed matrix computation (SDMC), where a \textit{user} queries a function of data matrices generated at distributed \textit{source} nodes. We assume the availability of $N$ honest but curious computation servers, which are connected to the sources, the user, and each other through orthogonal and reliable communication links. Our goal is to minimize the amount of data that must be transmitted from the sources to the servers, called the \textit{upload cost}, while guaranteeing that no $T$ colluding servers can learn any information about the source matrices, and the user cannot learn any information beyond the computation result. We first focus on secure distributed matrix multiplication (SDMM), considering two matrices, and propose a novel polynomial coding scheme using the properties of finite field discrete Fourier transform, which achieves an upload cost significantly lower than the existing results in the literature. We then generalize the proposed scheme to include straggler mitigation, and to the multiplication of multiple matrices while keeping the input matrices, the intermediate computation results, as well as the final result secure against any $T$ colluding servers. We also consider a special case, called computation with own data, where the data matrices used for computation belong to the user. In this case, we drop the security requirement against the user, and show that the proposed scheme achieves the minimal upload cost. We then propose methods for performing other common matrix computations securely on distributed servers, including changing the parameters of secret sharing, matrix transpose, matrix exponentiation, solving a linear system, and matrix inversion, which are then used to show how arbitrary matrix polynomials can be computed securely on distributed servers using the proposed procedure.