论文标题
安德森本地化的快速方法,即偶尔 - $ n $ dyson绝缘子
A fast approach to Anderson localization for even-$N$ Dyson insulator
论文作者
论文摘要
与常见的Anderson绝缘子相比,在晶格方法中具有随机跳的戴森绝缘子,与现场障碍相比。对于偶数$ n $晶格站点,dyson绝缘子在乐队中心模仿伪差距,以及通过$ p(s)$分布获得的能量级别统计数据,靠近Anderson localized Poisson限制。对于奇数 - $ n $级别 - 抑制和Wigner统计信息,如$ 2D $ ANDERSON绝缘子的准金属制度中,另外一个$ E = 0 $ e = 0 $模式受到手性对称性的保护。计算了中带状态的参与率和多重尺寸的分布。在$ 1D $中,戴森州是本地化的,$ 2D $是分形的。我们的结果可能与光子波导阵列中手性定位的最新实验研究有关。
Dyson insulators with random hoppings in a lattice approach localization faster compared to the usual Anderson insulators with site disorder. For even-$N$ lattice sites the Dyson insulators mimic topological insulators with a pseudo-gap at the band center and the energy-level statistics obtained via the $P(S)$ distribution is of an intermediate type close to the Anderson localized Poisson limit. For odd-$N$ level-repulsion and Wigner statistics appears as in the quasi-metallic regime of $2D$ Anderson insulators, plus a single $E=0$ mode protected by chiral symmetry. The distribution of the participation ratio and the multifractal dimensions of the midband state are computed. In $1D$ the Dyson state is localized and in $2D$ is fractal. Our results might be relevant for recent experimental studies of chiral localization in photonic waveguide arrays.