论文标题
多项式和序列的离散加权马尔可夫 - 伯恩斯坦不等式
A discrete weighted Markov--Bernstein inequality for polynomials and sequences
论文作者
论文摘要
对于参数,$ \,c \ in(0,1)\,$和$ \,β> 0 $,让$ \,\ ell_ {2}(c,β)\,$是$ \,\ m athbb {n} n} \,$(i.e.,实际序列)的真实功能的希尔伯特·希尔伯特空间,以下f \ | _ {c,β}^2:= \ sum_ {k = 0}^{\ infty} \ frac {(β)_k} {k!} {k!} \,c^k \,[f(k)]^2 <\ infty \ \ \,。 $$我们在离散的Markov-Bernstein不等式中研究最好的(即最小)常数$ \,γ_n(c,β)\,$,$ p \ in \ Mathcal {p} _n \ ,, $ \,$ \,\ Mathcal {p} _n \,$是最多$ \,n \,$和$ \,$ \,$ \,$ \,$ \,δf(x):= f(x+1)的真实代数polyenmials over $ \,n \,$ \,$ \,$ \,$ \,$。 我们证明: (i)$ \displayStyleγ_n(c,1)\ leq 1+ \ frac {1} {\ sqrt {\ sqrt {c}}} \,$,$,$,$,$ \,n \,n \ in \ mathbb {n} 1+ \ frac {1} {\ sqrt {c}}} \,$。 (ii)对于(0,1)\,$,$ \,γ_n(c,β)\的每个固定$ \,c \,$是$ \,β\,$ in $ \ in $ \,(0,\ infty)\,$的单调降低函数。 (iii)对于(0,1)\,$和$ \,$ \,$ \,$ \,$,最佳Markov-Bernstein常数$ \,γ_n(c,β)\,$相对于$ \,n $均匀界限。 在$ \,\ ell_ {2}(c,β)\,$中,序列证明了类似的马尔可夫 - 伯恩斯坦不等式。我们还建立了最佳的马尔可夫 - 伯恩斯坦常数$ \,γ_n(c,β)\,$和某些明确给定的雅各比矩阵的最小特征值。
For parameters $\,c\in(0,1)\,$ and $\,β>0$, let $\,\ell_{2}(c,β)\,$ be the Hilbert space of real functions defined on $\,\mathbb{N}\,$ (i.e., real sequences), for which $$ \| f \|_{c,β}^2 := \sum_{k=0}^{\infty}\frac{(β)_k}{k!}\,c^k\,[f(k)]^2<\infty\,. $$ We study the best (i.e., the smallest possible) constant $\,γ_n(c,β)\,$ in the discrete Markov-Bernstein inequality $$ \|ΔP\|_{c,β}\leq γ_n(c,β)\,\|P\|_{c,β}\,,\quad P\in\mathcal{P}_n\,, $$ where $\,\mathcal{P}_n\,$ is the set of real algebraic polynomials of degree at most $\,n\,$ and $\,Δf(x):=f(x+1)-f(x)\,$. We prove that: (i) $\displaystyle γ_n(c,1)\leq 1+\frac{1}{\sqrt{c}}\,$ for every $\,n\in \mathbb{N}\,$ and $\displaystyle \lim_{n\to\infty}γ_n(c,1)= 1+\frac{1}{\sqrt{c}}\,$. (ii) For every fixed $\,c\in (0,1)\,$, $\,γ_n(c,β)\,$ is a monotonically decreasing function of $\,β\,$ in $\,(0,\infty)\,$. (iii) For every fixed $\,c\in (0,1)\,$ and $\,β>0\,$, the best Markov-Bernstein constants $\,γ_n(c,β)\,$ are bounded uniformly with respect to $\,n$. A similar Markov-Bernstein unequality is proved for sequences in $\,\ell_{2}(c,β)\,$. We also establish a relation between the best Markov-Bernstein constants $\,γ_n(c,β)\,$ and the smallest eigenvalues of certain explicitly given Jacobi matrices.