论文标题
在类型$ e $的舒伯特品种的切线锥上
On tangent cones to Schubert varieties in type $E$
论文作者
论文摘要
我们考虑到舒伯特次级的切线锥体,$ g/b $,其中$ b $是一个还原复合体代数$ g $ type $ e_6 $,$ e_7 $或$ e_8 $的borel子组。我们证明,如果$ w_1 $和$ w_2 $在Weyl ofer组$ w $ $ g $中形成一对好的对象,那么切线锥体$ c_ {w_1} $和$ c_ {w_2} $与相应的Schubert Subvarieties的$ G/B $不一致的$ G/B $ g/b/b $ g/b $ g/b/b。
We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.