论文标题

固定限制中的确定点过程:扩展的L-元素,部分预测DPP和普遍性类别

Determinantal Point Processes in the Flat Limit: Extended L-ensembles, Partial-Projection DPPs and Universality Classes

论文作者

Barthelmé, Simon, Tremblay, Nicolas, Usevich, Konstantin, Amblard, Pierre-Olivier

论文摘要

确定点过程(DPPS)是排斥点过程,其中点之间的相互作用取决于阳性semi确定矩阵的决定因素。本文的贡献是两个方面。首先,我们介绍了扩展L-Angemble的概念,这是DPP的新颖代表。这些扩展的l谐振是有趣的对象,因为它们在DPP的通常形式主义中修复了一些病理,例如投射DPP不是L含量的事实。每个(固定尺寸)DPP都是(固定大小)扩展的L-安装,包括投影DPP。这种新的形式主义使得可以引入和分析一个DPP的子类,称为部分预测DPP。其次,有了这些新的定义,我们首先表明,部分预测dpps作为l-谐振的扰动限制(即$ \ varepsilon \ rightarrow \ rightarrow 0 $ in of L-Emembles的限制),基于$ \ varepsilon \ varepsilon \ varepsilon \ varepsiLON \ varepsiLON \ varepsiL \ a} $ \ nher wher低级。我们通过表明部分基于内核矩阵的l-增强剂的限制过程来概括该结果,当内核函数变得平坦时(从某种意义上说,每个点都与其他所有点相互作用)。我们表明,限制点过程主要取决于内核函数的平滑度。在某些情况下,限制过程甚至是普遍的,这意味着它不取决于内核函数的细节,而仅取决于其光滑程度。

Determinantal point processes (DPPs) are repulsive point processes where the interaction between points depends on the determinant of a positive-semi definite matrix. The contributions of this paper are two-fold. First of all, we introduce the concept of extended L-ensemble, a novel representation of DPPs. These extended L-ensembles are interesting objects because they fix some pathologies in the usual formalism of DPPs, for instance the fact that projection DPPs are not L-ensembles. Every (fixed-size) DPP is an (fixed-size) extended L-ensemble, including projection DPPs. This new formalism enables to introduce and analyze a subclass of DPPs, called partial-projection DPPs. Secondly, with these new definitions in hand, we first show that partial-projection DPPs arise as perturbative limits of L-ensembles, that is, limits in $\varepsilon \rightarrow 0$ of L-ensembles based on matrices of the form $\varepsilon \mathbf{A} + \mathbf{B}$ where $\mathbf{B}$ is low-rank. We generalise this result by showing that partial-projection DPPs also arise as the limiting process of L-ensembles based on kernel matrices, when the kernel function becomes flat (so that every point interacts with every other point, in a sense). We show that the limiting point process depends mostly on the smoothness of the kernel function. In some cases, the limiting process is even universal, meaning that it does not depend on specifics of the kernel function, but only on its degree of smoothness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源