论文标题
NPLIC:分段线性界面构建的机器学习方法
NPLIC: A Machine Learning Approach to Piecewise Linear Interface Construction
论文作者
论文摘要
流体(VOF)方法的体积被广泛用于跟踪数值模拟中的流体接口,许多VOF算法要求将接口进行几何重建。为此,最常使用分段线性接口构建(PLIC)技术,出于几何复杂性,这可能是缓慢且难以实施的。在这里,我们提出了一种基于神经网络的方法,称为NPLIC来执行PLIC计算。该模型在用于方形,立方,三角形和四面体网格的大型PLIC溶液的合成数据集上进行了训练。我们表明,这种数据驱动的方法会以通常的计算成本的一小部分进行准确的计算,并且可以将单个神经网络系统用于接口重建不同网格类型。
Volume of fluid (VOF) methods are extensively used to track fluid interfaces in numerical simulations, and many VOF algorithms require that the interface be reconstructed geometrically. For this purpose, the Piecewise Linear Interface Construction (PLIC) technique is most frequently used, which for reasons of geometric complexity can be slow and difficult to implement. Here, we propose an alternative neural network based method called NPLIC to perform PLIC calculations. The model is trained on a large synthetic dataset of PLIC solutions for square, cubic, triangular, and tetrahedral meshes. We show that this data-driven approach results in accurate calculations at a fraction of the usual computational cost, and a single neural network system can be used for interface reconstruction of different mesh types.