论文标题
基于内核的非马克维亚时间序列的预测
Kernel-based Prediction of Non-Markovian Time Series
论文作者
论文摘要
开发了一种预测部分观察到的动态的非参数方法。我们认为的预测问题是一项有监督的学习任务,该任务是找到回归函数,该功能将延迟嵌入的嵌入式嵌入到了将来的时间。当适用延迟嵌入理论时,提出的回归函数是延迟嵌入引起的流量图的一致估计器。此外,管理可观察到的相应的Mori-Zwanzig方程仅由回归函数表示,仅简化为马尔可夫术语。我们通过一类基于内核的线性估计器,内核模拟预测(KAF)实现了这项监督的学习任务,它们在大数据的限制中是一致的。在具有高维的协变量空间的情况下,我们采用了马尔可夫内核平滑法,该方法比NyStröm投影方法更便宜,以实现KAF。除了保证的理论融合外,我们还在数值上证明了这种方法对相关核特征很难用NyStröm方法捕获的高维问题的有效性。鉴于嘈杂的训练数据,我们提出了一种非参数更顺畅的方法,作为一种降价方法。从数值上讲,我们表明,在被独立损坏(但不一定一定分布)噪声损坏的信号中,提出的更平滑的噪声比ENKF和4DVAR更准确,即使使用白噪声损坏的数据集构造了更平滑的噪声。我们使用根据DeNo的数据构建的KAF来显示熟练的预测。
A nonparametric method to predict non-Markovian time series of partially observed dynamics is developed. The prediction problem we consider is a supervised learning task of finding a regression function that takes a delay embedded observable to the observable at a future time. When delay embedding theory is applicable, the proposed regression function is a consistent estimator of the flow map induced by the delay embedding. Furthermore, the corresponding Mori-Zwanzig equation governing the evolution of the observable simplifies to only a Markovian term, represented by the regression function. We realize this supervised learning task with a class of kernel-based linear estimators, the kernel analog forecast (KAF), which are consistent in the limit of large data. In a scenario with a high-dimensional covariate space, we employ a Markovian kernel smoothing method which is computationally cheaper than the Nyström projection method for realizing KAF. In addition to the guaranteed theoretical convergence, we numerically demonstrate the effectiveness of this approach on higher-dimensional problems where the relevant kernel features are difficult to capture with the Nyström method. Given noisy training data, we propose a nonparametric smoother as a de-noising method. Numerically, we show that the proposed smoother is more accurate than EnKF and 4Dvar in de-noising signals corrupted by independent (but not necessarily identically distributed) noise, even if the smoother is constructed using a data set corrupted by white noise. We show skillful prediction using the KAF constructed from the denoised data.