论文标题

通过多重加固学习,微电网之间的分布式能源交易和调度

Distributed Energy Trading and Scheduling among Microgrids via Multiagent Reinforcement Learning

论文作者

Gao, Guanyu, Wen, Yonggang, Wu, Xiaohu, Wang, Ran

论文摘要

可再生能源发电的发展使微电网能够产生电力,以供应自身并在能源市场上交易盈余。为了最大程度地减少整体成本,微电网必须确定如何安排其能源资源和电力负载以及如何与他人交易。控制决策受到各种因素的影响,例如能源存储,可再生能源产量,电气负载和来自其他微电网的竞争。由于相互联系的微电网,可再生能源产生和消费的不确定性以及微电网之间的相互作用,做出最佳控制决策是具有挑战性的。先前的作品主要采用了基于建模的方法来得出控制决定,但它们依靠未来系统动态的确切信息,在复杂的环境中很难获得。这项工作提供了一种新的观点,即通过与环境直接互动来获得分布式能源交易和调度的最佳控制策略,并提出了一种多种深层强化学习方法,以学习最佳控制策略。每个微电网都被建模为代理,不同的代理商会协作以最大程度地提高其奖励。每个微电网的代理可以做出本地调度决定,而无需了解他人的信息,这可以很好地维护每个微电网的自主权。我们使用现实世界数据集评估了我们提出的方法的性能。实验结果表明,与基线方法相比,我们的方法可以显着降低微电网的成本。

The development of renewable energy generation empowers microgrids to generate electricity to supply itself and to trade the surplus on energy markets. To minimize the overall cost, a microgrid must determine how to schedule its energy resources and electrical loads and how to trade with others. The control decisions are influenced by various factors, such as energy storage, renewable energy yield, electrical load, and competition from other microgrids. Making the optimal control decision is challenging, due to the complexity of the interconnected microgrids, the uncertainty of renewable energy generation and consumption, and the interplay among microgrids. The previous works mainly adopted the modeling-based approaches for deriving the control decision, yet they relied on the precise information of future system dynamics, which can be hard to obtain in a complex environment. This work provides a new perspective of obtaining the optimal control policy for distributed energy trading and scheduling by directly interacting with the environment, and proposes a multiagent deep reinforcement learning approach for learning the optimal control policy. Each microgrid is modeled as an agent, and different agents learn collaboratively for maximizing their rewards. The agent of each microgrid can make the local scheduling decision without knowing others' information, which can well maintain the autonomy of each microgrid. We evaluate the performances of our proposed method using real-world datasets. The experimental results show that our method can significantly reduce the cost of the microgrids compared with the baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源