论文标题
与Nilpotent Lie组的表示和广义时频分析相关的新功能空间
New Function Spaces Associated to Representations of Nilpotent Lie Groups and Generalized Time-Frequency Analysis
论文作者
论文摘要
我们研究与几个低维nilpotent Lie基团的正方形,不可还原,统一表示相关的功能空间。这些是库里特理论的新示例,并在$ \ mathbb {r}^d $上产生了新的功能空间家族。表示形式的具体实现表明,这些功能空间可用于广义时频分析或相位空间分析。
We study function spaces that are related to square-integrable, irreducible, unitary representations of several low-dimensional nilpotent Lie groups. These are new examples of coorbit theory and yield new families of function spaces on $\mathbb{R}^d $. The concrete realization of the representation suggests that these function spaces are useful for generalized time-frequency analysis or phase-space analysis.