论文标题
Pansu-Wulff形状$ \ Mathbb {H}^1 $
Pansu-Wulff shapes in $\mathbb{H}^1$
论文作者
论文摘要
我们考虑了第一个Heisenberg Group $ \ Mathbb {H}^1 $在凸面$ k \ subset \ subset \ mathbb {r}^2 $中包含其内部中的原点。与$ \ | \ cdot \ | _k $相关联,有一个外围功能,与经典的子riemannian外围相吻合,如果$ k $是$ \ mathbb {r}^2 $的闭合单位磁盘。假设$ k $具有$ c^2 $边界,并具有严格的正测量曲率,我们计算具有$ c^2 $边界的套件的第一个变化公式。分子公式在边界的非单个部分中的定位,该点由切线平面不是水平的点组成,使我们能够定义一个平均曲率函数$ h_k $从单数集合中。在非呈均值曲率的情况下,$ h_k $是恒定的条件,意味着边界的非单个部分是由$ \ partial k $的平移的水平升降,而$ 1/h_k $散布的。基于此,我们可以通过考虑$ \ partial k $的所有水平升降机的结合,从$(0,0,0,0)$开始,直到它们在垂直轴的一个点再次相遇。我们给出了该球体的一些几何特性,此外,我们证明,由于非均匀扩张和左翻译,它们是限制性类别的子纤维等法问题的唯一解决方案。
We consider an asymmetric left-invariant norm $||\cdot ||_K$ in the first Heisenberg group $\mathbb{H}^1$ induced by a convex body $K\subset\mathbb{R}^2$ containing the origin in its interior. Associated to $\|\cdot\|_K$ there is a perimeter functional, that coincides with the classical sub-Riemannian perimeter in case $K$ is the closed unit disk centered at the origin of $\mathbb{R}^2$. Under the assumption that $K$ has $C^2$ boundary with strictly positive geodesic curvature we compute the first variation formula of perimeter for sets with $C^2$ boundary. The localization of the variational formula in the non-singular part of the boundary, composed of the points where the tangent plane is not horizontal, allows us to define a mean curvature function $H_K$ out of the singular set. In the case of non-vanishing mean curvature, the condition that $H_K$ be constant implies that the non-singular portion of the boundary is foliated by horizontal liftings of translations of $\partial K$ dilated by a factor of $1/H_K$. Based on this we can defined a sphere $\mathbb{S}_K$ with constant mean curvature $1$ by considering the union of all horizontal liftings of $\partial K$ starting from $(0,0,0)$ until they meet again in a point of the vertical axis. We give some geometric properties of this sphere and, moreover, we prove that, up to non-homogeneous dilations and left-translations, they are the only solutions of the sub-Finsler isoperimetric problem in a restricted class of sets.