论文标题

Gintropy:基于Gini指数的熵概括

Gintropy: Gini index based generalization of Entropy

论文作者

Biró, Tamás S., Néda, Zoltán

论文摘要

熵用于物理,数学,信息学和相关领域,以描述平衡,耗散,最大概率状态和信息的最佳压缩。另一方面,Gini指数是对社会中社会和经济不平等的既定措施。在本文中,我们探讨了这两个数量中的数学相似性和连接,并引入了一种能够以有趣的类比级别连接这两个措施。这支持了以下观点:基于洛伦兹曲线的转换,gibbs的概括 - 玻尔兹曼 - 香农熵可以正确地用于量化社会和经济体物理学中复杂性的不同方面。

Entropy is being used in physics, mathematics, informatics and in related areas to describe equilibration, dissipation, maximal probability states and optimal compression of information. The Gini index on the other hand is an established measure for social and economical inequalities in a society. In this paper we explore the mathematical similarities and connections in these two quantities and introduce a new measure that is capable to connect these two at an interesting analogy level. This supports the idea that a generalization of the Gibbs--Boltzmann--Shannon entropy, based on a transformation of the Lorenz curve, can properly serve in quantifying different aspects of complexity in socio- and econo-physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源