论文标题
前列腺运动建模使用无组织节点上的生物力学训练的深神经网络
Prostate motion modelling using biomechanically-trained deep neural networks on unstructured nodes
论文作者
论文摘要
在本文中,我们建议使用生物力学模拟训练深层神经网络,以预测超声引导干预期间遇到的前列腺运动。在此应用中,从分段的术前MR图像中对非结构化点进行采样,以表示感兴趣的解剖区域。然后将点集用特定点的材料属性和位移载荷分配,从而形成未订购的输入特征向量。可以使用有限元(Fe)模拟作为地面真实数据来训练适应的点网,以预测节点位移。此外,由于患者的几何形状不同,通过多功能的自举汇总机制可以容纳可变数量的特征向量,该几何形状由训练时间的自举抽样和模型平均推断组成。这导致与FE溶液的快速准确近似,而无需特定于主体的固体网格划分。基于来自320名患者的临床成像数据的160,000个非线性FE模拟,我们证明,受过训练的网络概括为直接从保留患者分割中直接采样的非结构点集,从而在预测的结节位移中得出近乎实时的推理,预期误差为0.017 mm。
In this paper, we propose to train deep neural networks with biomechanical simulations, to predict the prostate motion encountered during ultrasound-guided interventions. In this application, unstructured points are sampled from segmented pre-operative MR images to represent the anatomical regions of interest. The point sets are then assigned with point-specific material properties and displacement loads, forming the un-ordered input feature vectors. An adapted PointNet can be trained to predict the nodal displacements, using finite element (FE) simulations as ground-truth data. Furthermore, a versatile bootstrap aggregating mechanism is validated to accommodate the variable number of feature vectors due to different patient geometries, comprised of a training-time bootstrap sampling and a model averaging inference. This results in a fast and accurate approximation to the FE solutions without requiring subject-specific solid meshing. Based on 160,000 nonlinear FE simulations on clinical imaging data from 320 patients, we demonstrate that the trained networks generalise to unstructured point sets sampled directly from holdout patient segmentation, yielding a near real-time inference and an expected error of 0.017 mm in predicted nodal displacement.