论文标题
开发和验证新型预后模型,用于使用纵向底部图像预测AMD进展
Development and Validation of a Novel Prognostic Model for Predicting AMD Progression Using Longitudinal Fundus Images
论文作者
论文摘要
预后模型旨在预测疾病或病情的未来过程,并且是个性化医学的重要组成部分。统计模型利用纵向数据来捕获疾病进展的时间方面。但是,这些模型需要事先提取。深度学习避免了明确的特征提取,这意味着我们可以为图像开发模型,其中特征是未知或无法准确量化的图像。以前使用深度学习与成像数据进行深度学习的预后模型需要在训练过程中注释或仅利用一个时间点。我们提出了一种新颖的深度学习方法,可以使用纵向成像数据以不均匀的时间间隔预测疾病的进展,这不需要事先提取。鉴于患者的先前图像,我们的方法旨在预测患者是否会发展到下一疾病的下一阶段。所提出的方法使用InceptionV3为每个图像产生特征向量。为了说明间隔不均匀,提出了新的间隔缩放。最后,复发性神经网络用于预测疾病。我们在与年龄相关的眼科疾病研究中相关的4903眼(AMD)的彩色眼睛颜色图像的纵向数据集上演示了我们的方法,以预测进展到后期AMD。我们的方法达到了0.878的测试灵敏度,特异性为0.887,并且在接收器工作特性下的面积为0.950。我们将我们的方法与以前的方法进行比较,并在模型中显示出卓越的性能。类激活地图显示网络如何达到最终决定。
Prognostic models aim to predict the future course of a disease or condition and are a vital component of personalized medicine. Statistical models make use of longitudinal data to capture the temporal aspect of disease progression; however, these models require prior feature extraction. Deep learning avoids explicit feature extraction, meaning we can develop models for images where features are either unknown or impossible to quantify accurately. Previous prognostic models using deep learning with imaging data require annotation during training or only utilize a single time point. We propose a novel deep learning method to predict the progression of diseases using longitudinal imaging data with uneven time intervals, which requires no prior feature extraction. Given previous images from a patient, our method aims to predict whether the patient will progress onto the next stage of the disease. The proposed method uses InceptionV3 to produce feature vectors for each image. In order to account for uneven intervals, a novel interval scaling is proposed. Finally, a Recurrent Neural Network is used to prognosticate the disease. We demonstrate our method on a longitudinal dataset of color fundus images from 4903 eyes with age-related macular degeneration (AMD), taken from the Age-Related Eye Disease Study, to predict progression to late AMD. Our method attains a testing sensitivity of 0.878, a specificity of 0.887, and an area under the receiver operating characteristic of 0.950. We compare our method to previous methods, displaying superior performance in our model. Class activation maps display how the network reaches the final decision.