论文标题

在有限输入下,在2D障碍物环境中,在2D障碍物环境中的近似时间优势轨迹

Approximate Time-Optimal Trajectories for Damped Double Integrator in 2D Obstacle Environments under Bounded Inputs

论文作者

Chipade, Vishnu S., Panagou, Dimitra

论文摘要

本文为现有的基于路径速度分解的扩展提供了最佳轨迹计划算法\ cite {kant1986toward}的场景,其中代理在带有拖动术语(抑制双集成仪)的双集成器动力学下,在2D障碍物环境中移动2D障碍物环境。特别是,我们将切线图\ cite {liu1992path}的思想扩展到$ \ calc^1 $ - tangengent图,以查找任何两个点之间最短路径的连续区分($ \ calc^1 $)。 $ \ calc^1 $ -Tangent Graph在任何两个节点之间具有连续可区分的($ \ calc^1 $)路径。我们还为近时间最佳速度曲线提供了分析表达式,用于在带有有界加速度的阻尼双重积分器下移动这些最短路径的代理。

This article provides extensions to existing path-velocity decomposition based time optimal trajectory planning algorithm \cite{kant1986toward} to scenarios in which agents move in 2D obstacle environment under double integrator dynamics with drag term (damped double integrator). Particularly, we extend the idea of a tangent graph \cite{liu1992path} to $\calC^1$-Tangent graph to find continuously differentiable ($\calC^1$) shortest path between any two points. $\calC^1$-Tangent graph has a continuously differentiable ($\calC^1$) path between any two nodes. We also provide analytical expressions for a near time-optimal velocity profile for an agent moving on these shortest paths under the damped double integrator with bounded acceleration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源