论文标题
关于Bartnik边界数据的质量最小扩展
On mass-minimizing extensions of Bartnik boundary data
论文作者
论文摘要
我们证明,具有固定Bartnik边界数据并求解约束方程的初始数据集的空间是Banach歧管。此外,在此约束歧管上,ADM质量的临界点正是初始数据集,该数据集接纳了与ADM Energy-Momentum Vector成正比的渐近极限的概括性杀死载体场。
We prove that the space of initial data sets which have fixed Bartnik boundary data and solve the constraint equations is a Banach manifold. Moreover, on this constraint manifold the critical points of the ADM mass are exactly the initial data sets which admit generalised Killing vector fields with asymptotic limit proportional to the ADM energy-momentum vector.