论文标题

磁场模拟中的磁性影响和逆转

Magnetic effects on fields morphologies and reversals in geodynamo simulations

论文作者

Menu, Mélissa D., Petitdemange, Ludovic, Galtier, Sébastien

论文摘要

发电机效应是解释天体物理对象的非主磁场的最受欢迎的候选者。尽管已经对参数进行了许多系统的研究,以确定直接数值地缘模拟探索的不同动力学状态,但直到最近,与地球外部核心相对应的状态是由科里奥利和洛伦兹力量之间的力量平衡来表征的。在以前的大多数研究中,洛伦兹部队发挥了相对较小的作用。例如,他们表明纯流体动力参数(本地rossby number $ ro_ \ ell $确定了由轴向偶极子(偶极发电机)主导的发电机的稳定性域。 在这项研究中,我们表明,当洛伦兹力占主导地位时,这一结果无法得出。我们通过在几个数量级上改变了重要参数,用强洛伦兹力对湍流的地虫模拟进行建模。此方法使我们能够质疑先前的结果并争论数值发电机的应用,以便更好地理解Geodynamo问题。强大的偶极场极大地影响了对流运动的动能分布,从而可以维持此场构型。每种力的相对重要性取决于空间长度尺度,而$ ro_ \ ell $是一个全局输出参数,忽略了空间依赖性。我们表明,只要Lorentz和Coriolis力在较大的长度尺度上保持占主导地位,惯性就不会诱导偶极子塌陷。

The dynamo effect is the most popular candidate to explain the non-primordial magnetic fields of astrophysical objects. Although many systematic studies of parameters have already been made to determine the different dynamical regimes explored by direct numerical geodynamo simulations, it is only recently that the regime corresponding to the outer core of the Earth characterized by a balance of forces between the Coriolis and Lorentz forces is accessible numerically. In most previous studies, the Lorentz force played a relatively minor role. For example, they have shown that a purely hydrodynamic parameter (the local Rossby number $Ro_\ell$ determines the stability domain of dynamos dominated by the axial dipole (dipolar dynamos). In this study, we show that this result cannot hold when the Lorentz force becomes dominant. We model turbulent geodynamo simulations with a strong Lorentz force by varying the important parameters over several orders of magnitude. This method enables us to question previous results and to argue on the applications of numerical dynamos in order to better understand the geodynamo problem. Strong dipolar fields considerably affect the kinetic energy distribution of convective motions which enables the maintenance of this field configuration. The relative importance of each force depends on the spatial length scale, whereas $Ro_\ell$ is a global output parameter which ignores the spatial dependency. We show that inertia does not induce a dipole collapse as long as the Lorentz and the Coriolis forces remain dominant at large length scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源