论文标题

Lebesgue空间的矢量平衡

Vector Balancing in Lebesgue Spaces

论文作者

Reis, Victor, Rothvoss, Thomas

论文摘要

离散数学中的诱人猜想是Komlós之一,这表明对于任何向量$ \ MathBf {a} _1,\ ldots,\ Mathbf {a} _n \ in B_2^m $ in $美元问$ \ ell_q $ -norm绑定到$ \ mathbf {a} _1,\ ldots,\ mathbf {a} _n \ in B_p^m $是什么,这是自然的扩展。我们证明,以$ 2 \ le p \ le q \ le \ le \ infty $,此类向量承认分数着色$ x_1,\ dots,x_n \ in [-1,1] $,线性数为$ \ pm 1 $ coordinate \ leq o(\ sqrt {\ min(p,\ log(2m/n))})\ cdot n^{1/2-1/p + 1/q} $,并且可以以$ \ frac {1/2-1/p + 1/p + 1/q} $的另一个因素而获得完整的着色。特别是,对于$ p \ in(2,3] $,我们确实可以找到符号$ \ mathbf {x} \ in \ {-1,1,1 \}^n $带有$ \ | \ | \ sum_ {i = 1}^n x_i \ x_i \ mathbf {a} \ frac {1} {p-2})$。 此外,我们证明,对于任何固定常数$δ> 0 $,在中央对称的主体中,$ k \ subseteq \ mathbb {r}^n $,至少$ e^{ - δn} $一个人可以在多项典型的时间中找到这样的分数着色。以前,这仅是一个足够小的常数而闻名的 - 实际上,在这种制度中,经典的非构造性参数不应用,并且形式的$ \ mathbf {x} \ in \ in \ {-1,0,1,1 \}^n $不一定存在。

A tantalizing conjecture in discrete mathematics is the one of Komlós, suggesting that for any vectors $\mathbf{a}_1,\ldots,\mathbf{a}_n \in B_2^m$ there exist signs $x_1, \dots, x_n \in \{ -1,1\}$ so that $\|\sum_{i=1}^n x_i\mathbf{a}_i\|_\infty \le O(1)$. It is a natural extension to ask what $\ell_q$-norm bound to expect for $\mathbf{a}_1,\ldots,\mathbf{a}_n \in B_p^m$. We prove that, for $2 \le p \le q \le \infty$, such vectors admit fractional colorings $x_1, \dots, x_n \in [-1,1]$ with a linear number of $\pm 1$ coordinates so that $\|\sum_{i=1}^n x_i\mathbf{a}_i\|_q \leq O(\sqrt{\min(p,\log(2m/n))}) \cdot n^{1/2-1/p+ 1/q}$, and that one can obtain a full coloring at the expense of another factor of $\frac{1}{1/2 - 1/p + 1/q}$. In particular, for $p \in (2,3]$ we can indeed find signs $\mathbf{x} \in \{ -1,1\}^n$ with $\|\sum_{i=1}^n x_i\mathbf{a}_i\|_\infty \le O(n^{1/2-1/p} \cdot \frac{1}{p-2})$. Our result generalizes Spencer's theorem, for which $p = q = \infty$, and is tight for $m = n$. Additionally, we prove that for any fixed constant $δ>0$, in a centrally symmetric body $K \subseteq \mathbb{R}^n$ with measure at least $e^{-δn}$ one can find such a fractional coloring in polynomial time. Previously this was known only for a small enough constant -- indeed in this regime classical nonconstructive arguments do not apply and partial colorings of the form $\mathbf{x} \in \{ -1,0,1\}^n$ do not necessarily exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源