论文标题
深层还是简单的语义标记模型?这取决于您的数据[实验]
Deep or Simple Models for Semantic Tagging? It Depends on your Data [Experiments]
论文作者
论文摘要
在文本挖掘中具有广泛应用的语义标记可以预测给定文本是否传达给定语义标签的含义。语义标记的问题在很大程度上是通过有监督的学习来解决的,如今,深度学习模型被广泛认为是对语义标记的更好的。但是,没有全面的研究支持普遍的看法。从业人员通常必须为每个语义标记任务训练不同类型的模型以识别最佳模型。这个过程既昂贵又效率低下。 我们开始进行系统研究以调查以下问题:深层模型是否是所有语义标记任务的最佳性能模型?为了回答这个问题,我们将深层模型与具有不同特征不同的数据集进行了比较。具体来说,我们选择了三个普遍的深层模型(即CNN,LSTM和BERT)和两个简单的模型(即LR和SVM),并比较他们在21个数据集中的语义标记任务上的性能。结果表明,数据集的大小,标签比和标签清洁度显着影响语义标记的质量。简单的模型具有与大型数据集上的深层模型相似的标记质量,但是简单模型的运行时间要短得多。此外,当靶向数据集显示出更差的标签清洁度和/或更严重的失衡时,简单的模型比Deep Models可以实现更好的标记质量。基于这些发现,我们的研究可以系统地指导从业人员为其语义标记任务选择正确的学习模型。
Semantic tagging, which has extensive applications in text mining, predicts whether a given piece of text conveys the meaning of a given semantic tag. The problem of semantic tagging is largely solved with supervised learning and today, deep learning models are widely perceived to be better for semantic tagging. However, there is no comprehensive study supporting the popular belief. Practitioners often have to train different types of models for each semantic tagging task to identify the best model. This process is both expensive and inefficient. We embark on a systematic study to investigate the following question: Are deep models the best performing model for all semantic tagging tasks? To answer this question, we compare deep models against "simple models" over datasets with varying characteristics. Specifically, we select three prevalent deep models (i.e. CNN, LSTM, and BERT) and two simple models (i.e. LR and SVM), and compare their performance on the semantic tagging task over 21 datasets. Results show that the size, the label ratio, and the label cleanliness of a dataset significantly impact the quality of semantic tagging. Simple models achieve similar tagging quality to deep models on large datasets, but the runtime of simple models is much shorter. Moreover, simple models can achieve better tagging quality than deep models when targeting datasets show worse label cleanliness and/or more severe imbalance. Based on these findings, our study can systematically guide practitioners in selecting the right learning model for their semantic tagging task.