论文标题

类别$ \ Mathcal {o} $的投影和惠特克函子

Projective and Whittaker functors on category $\mathcal{O}$

论文作者

Arias, Juan Camilo, Backelin, Erik

论文摘要

我们表明,可以通过将soergel和Miličić的惠特克尔(Soergel)和米利奇奇(Miličić)等价的惠特函数的翻译和$ \ nathcal $ \ nathcal的单个类别的类别撰写,可以获得惠特克(Whittaker)在BGG类别$ \ Mathcal $ \ Mathcal $ \ Mathcal {o} $中的常规函数​​。我们表明,惠特克函子是一个商函子,与所有投射函数和它们之间的内态性通勤。

We show that the Whittaker functor on a regular block of the BGG-category $\mathcal{O}$ of a semisimple complex Lie algebra can be obtained by composing a translation to the wall functor with Soergel and Miličić's equivalence between the category of Whittaker modules and a singular block of $\mathcal{O}$. We show that the Whittaker functor is a quotient functor that commutes with all projective functors and endomorphisms between them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源