论文标题

$ ac(σ)$多边形曲线的空间

$AC(σ)$ spaces for polygonally inscribed curves

论文作者

Al-shakarchi, Shaymaa, Doust, Ian

论文摘要

对于某些平面的紧凑子集的家族,集合中绝对连续功能的代数的同构类别完全取决于集合的同构类别。这类似于Gelfand-Kolmogorov定理的$ C(k)$。在本文中,我们定义了一个紧凑型套装的家族,其中包括有限的凸曲线工会,并表明该家族具有“ gelfand-kolmogorov”的财产。

For certain families of compact subsets of the plane, the isomorphism class of the algebra of absolutely continuous functions on a set is completely determined by the homeomorphism class of the set. This is analogous to the Gelfand--Kolmogorov theorem for $C(K)$ spaces. In this paper we define a family of compact sets comprising finite unions of convex curves and show that this family has the `Gelfand--Kolmogorov' property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源