论文标题

时间变化的光谱热含量被杀死的布朗动作

Spectral heat content for time-changed killed Brownian motions

论文作者

Kobayashi, Kei, Park, Hyunchul

论文摘要

研究了光谱热含量,以用于在C1,1开放式上进行时变的杀死的布朗尼动作,在该集合中,下属或逆下属的时间变化是给出的,其基础拉普拉斯指数在\ Indexβ\ in(0、1)定期定期变化。在下属下属的情况下,光谱热含量的渐近极限显示仅取决于(0,1)中的β\。相反,在下属的情况下,这种普遍性仅在(1/2,1)中的β\时成立。

The spectral heat content is investigated for time-changed killed Brownian motions on C1,1 open sets, where the time change is given by either a subordinator or an inverse subordinator, with the underlying Laplace exponent being regularly varying at \infty with index β\in (0, 1). In the case of inverse subordinators, the asymptotic limit of the spectral heat content is shown to involve a probabilistic term depending only on β\in (0, 1). In contrast, in the case of subordinators, this universality holds only when β\in ( 1/2 , 1).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源