论文标题
平面缠结的无限敌
An infinite antichain of planar tanglegrams
论文作者
论文摘要
与Égramkuratowski定理产生的期望相反。 Czabarka,L.A。Székely和S. Wagner [Siam J.离散数学。 31(3):1732--1750,(2017)],我们构建了平面缠结的无限敌,相对于诱导的子tanglegram部分顺序。关于。 Tarjan,R。Laver,D.A。 Spielman和M.Bóna以及可能的其他人表明,通过删除条目排序的部分有限排列包含一个无限的抗逆金,即存在无限的置换收集,因此没有一个包含另一个抗逆转录机。我们的建筑为Spielman和Bóna的构建增加了扭曲。 J. Comb,卷。 7。N2。]
Contrary to the expectation arising from the tanglegram Kuratowski theorem of É. Czabarka, L.A. Székely and S. Wagner [SIAM J. Discrete Math. 31(3): 1732--1750, (2017)], we construct an infinite antichain of planar tanglegrams with respect to the induced subtanglegram partial order. R.E. Tarjan, R. Laver, D.A. Spielman and M. Bóna, and possibly others, showed that the partially ordered set of finite permutations ordered by deletion of entries contains an infinite antichain, i.e. there exists an infinite collection of permutations, such that none of them contains another as a pattern. Our construction adds a twist to the construction of Spielman and Bóna [Electr. J. Comb, Vol. 7. N2.]