论文标题

依赖的dirichlet过程和相关模型

The Dependent Dirichlet Process and Related Models

论文作者

Quintana, Fernand A., Mueller, Peter, Jara, Alejandro, MacEachern, Steven N.

论文摘要

标准回归方法假定某些有限数量的响应分布特性(例如位置和比例)随着预测变量的(参数或非参数)功能而变化。但是,假设误差分布在预测器空间上的形状不变并不总是合适的。实际上,通常在应用研究中发生,研究中的响应的分布与预测因子的分布无法通过有限的维函数形式合理地表示。这可能会严重影响感兴趣的科学问题的答案,因此确实需要更一般的方法。这引起了完全非参数回归模型的研究。我们回顾了一些用于定义概率模型的主要贝叶斯方法,其中完整响应分布可能会随着预测变量而灵活地变化。我们专注于基于Dirichlet过程的修改,历史上称为依赖性的Dirichlet过程以及提出的一些扩展,以使用非参数方法解决这一普遍问题。

Standard regression approaches assume that some finite number of the response distribution characteristics, such as location and scale, change as a (parametric or nonparametric) function of predictors. However, it is not always appropriate to assume a location/scale representation, where the error distribution has unchanging shape over the predictor space. In fact, it often happens in applied research that the distribution of responses under study changes with predictors in ways that cannot be reasonably represented by a finite dimensional functional form. This can seriously affect the answers to the scientific questions of interest, and therefore more general approaches are indeed needed. This gives rise to the study of fully nonparametric regression models. We review some of the main Bayesian approaches that have been employed to define probability models where the complete response distribution may vary flexibly with predictors. We focus on developments based on modifications of the Dirichlet process, historically termed dependent Dirichlet processes, and some of the extensions that have been proposed to tackle this general problem using nonparametric approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源