论文标题
使用统计粒子方法对异质反应进行建模和模拟
Modelling and Simulation of Heterogeneous Reactions with Statistical Particle Methods
论文作者
论文摘要
估计重新进入车辆上的热量是准备大气再进入操作的关键部分。高海拔地区的重新输入流处于稀有体制中,并由高焓和热力学非平衡性控制。此外,催化气体表面反应改变了气流组成,并可能对传热产生重大影响。我们的目标是估计热载荷,而无需先验将模拟参数与实验拟合。我们使用工具PICLAS来模拟这种稀有气流。它结合了不同的粒子方法,包括直接模拟蒙特卡洛方法,用于建模气体。最近,它已扩展到包括不同的催化模型,以治疗表面上的反应。我们评估了一种动力学蒙特卡洛方法,以结合使用粒子方法结合流量模拟对催化气体表面相互作用进行建模。在这里,吸附物分布是通过使用动力学蒙特卡洛方法重现表面系统并使用模型假设估算必要参数的模型来建模的。将此催化模型与简单的重组模型进行比较。我们提供了模拟,以显示氧气流中$ \ mathrm {sio_2} $表面实现模型的功能。此外,将模拟结果与从相应实验获得的热通量和重组系数进行了比较。结果表明,使用动力学蒙特卡洛方法的模拟与实验获得的值匹配。因此,该方法可用于估计氧气流在$ \ mathrm {sio_2} $表面上的反应性。
Estimating the heat loads on re-entry vehicles is a crucial part of preparing for atmospheric re-entry manoeuvres. Re-entry flows at high altitudes are in the rarefied regime and are governed by high enthalpies and thermodynamic non-equilibrium. Additionally, catalytic gas-surface reactions change the gas flow composition and can have a major influence on the heat transfer. Our goal is to estimate the heat loads without a priori fitting of simulation parameters to experiments. We use the tool PICLas for simulations of such rarefied gas flows. It combines different particle methods, including the Direct Simulation Monte Carlo method, for modelling of gases. Recently it has been extended to include different catalysis models to treat reactions on surfaces. We evaluate a kinetic Monte Carlo approach to model catalytic gas-surface interactions in combination with flow simulations using particle methods. Here, the adsorbate distribution is modelled by reproducing a surface system using a kinetic Monte Carlo approach and estimating the necessary parameters using model assumptions. This catalytic model is compared to a simple recombination model. We present simulations that show the capability of the implemented models for a $\mathrm{SiO_2}$ surface in an Oxygen flow. Furthermore, simulation results are compared to heat fluxes and recombination coefficient obtained from the respective experiment. The results show that simulations using the kinetic Monte Carlo approach match the experimentally obtained values. Thus, the approach can be used to estimate the reactivity of oxygen flows over $\mathrm{SiO_2}$ surfaces.