论文标题

在1D盒中的3D和1D Weyl颗粒上

On 3D and 1D Weyl particles in a 1D box

论文作者

De Vincenzo, Salvatore

论文摘要

我们为三个(同等)Weyl Hamiltonian操作员构建了最普遍的自我伴侣边界条件的家族,每个都描述了位于沿着笛卡尔轴的一维盒子中的三维Weyl粒子。这些结果实质上是通过使用最普遍的自我接合边界条件的家族来获得的,该族族人的二维狄拉克粒子在盒子中描述了一个盒子中的一维狄拉克粒子,并在Weyl表示中描述了一维的狄拉克粒子,并通过对该操作员应用简单的表示形式。同样,我们为Weyl Hamiltonian操作员介绍了最普遍的自我接合边界条件家族,该官员描述了一维盒子中的一维Weyl粒子。我们还在整个文章中获得并讨论了与(3+1)和(1+1)维度相关的明显结果,除了它们各自的波函数外,还提供了与(1+1)维度中DIRAC方程表示相关的某些关键结果。

We construct the most general families of self-adjoint boundary conditions for three (equivalent) Weyl Hamiltonian operators, each describing a three-dimensional Weyl particle in a one-dimensional box situated along a Cartesian axis. These results are essentially obtained by using the most general family of self-adjoint boundary conditions for a Dirac Hamiltonian operator that describes a one-dimensional Dirac particle in a box, in the Weyl representation, and by applying simple changes of representation to this operator. Likewise, we present the most general family of self-adjoint boundary conditions for a Weyl Hamiltonian operator that describes a one-dimensional Weyl particle in a one-dimensional box. We also obtain and discuss throughout the article distinct results related to the Weyl equations in (3+1) and (1+1) dimensions, in addition to their respective wave functions, and present certain key results related to representations for the Dirac equation in (1+1) dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源