论文标题

与二次残基有关的决定因素的三个猜想的证明

Proof of three conjectures on determinants related to quadratic residues

论文作者

Grinberg, Darij, Sun, Zhi-Wei, Zhao, Lilu

论文摘要

在本文中,我们证实了Z.-W的三个猜想。阳光在决定因素上。我们首先表明,任何奇数的整数$ n> 3 $都将确定性$$ \ left |(i^2+dj^2)\ left(\ frac {\ frac {i^2+dj^2} n \ right)\ right | _ {0 \ right | _ {0 \ le \ le i i,j \ le(n-1)/2},$ d $ d $ d $ c.雅各比符号。然后,我们证明了一些有关$ |(i+dj)^n | _ {0 \ le i,j \ le n-1} $和$ |(i^2+dj^2)^n | _ {0 \ le i,j \ le i,j \ le n-1} $,其中$ d \ d \ d \ d \ d \ d \ not = 0 $ not = 0 $和$ n> 2 $ integers integers,最后,对于任何奇怪的prime $ p $和Integers $ c $和$ p \ nmid cd $的$ d $,我们完全确定legendre符号$(\ frac {s_c(d,p)} p)$,其中$ s_c(d,p):= |(\ frac {\ frac {i^2+dj^2+dj^2+dj^2+c} p) i,j \ le(p-1)/2} $。

In this paper we confirm three conjectures of Z.-W. Sun on determinants. We first show that any odd integer $n>3$ divides the determinant $$\left|(i^2+dj^2)\left(\frac{i^2+dj^2}n\right)\right|_{0\le i,j\le (n-1)/2},$$ where $d$ is any integer and $(\frac{\cdot}n)$ is the Jacobi symbol. Then we prove some divisibility results concerning $|(i+dj)^n|_{0\le i,j\le n-1}$ and $|(i^2+dj^2)^n|_{0\le i,j\le n-1}$, where $d\not=0$ and $n>2$ are integers. Finally, for any odd prime $p$ and integers $c$ and $d$ with $p\nmid cd$, we determine completely the Legendre symbol $(\frac{S_c(d,p)}p)$, where $S_c(d,p):=|(\frac{i^2+dj^2+c}p)|_{1\le i,j\le(p-1)/2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源