论文标题
从部分观察中对以独立级联动力学的预测学习
Prediction-Centric Learning of Independent Cascade Dynamics from Partial Observations
论文作者
论文摘要
传播过程在建模扩散网络,信息传播,营销和意见设置中起着越来越重要的作用。我们解决了学习扩散模型的问题,以便从该模型产生的预测是准确的,随后可以用于优化和控制扩散动力学。我们专注于一个充分观察动态的具有挑战性的环境,并且标准方法(例如最大似然之类的标准方法)迅速在大型网络实例中棘手。我们基于可扩展的动态消息通话方法引入了一种计算有效算法,该方法能够学习有效扩散模型的参数,仅在网络中节点的激活时间的信息中仅提供了有限的信息。流行的独立级联模型用于说明我们的方法。我们表明,与原始模型相比,从学习模型中的可牵引推断会产生更好的边缘概率预测。我们开发了一个系统的程序来学习模型的混合,从而进一步提高了预测质量。
Spreading processes play an increasingly important role in modeling for diffusion networks, information propagation, marketing and opinion setting. We address the problem of learning of a spreading model such that the predictions generated from this model are accurate and could be subsequently used for the optimization, and control of diffusion dynamics. We focus on a challenging setting where full observations of the dynamics are not available, and standard approaches such as maximum likelihood quickly become intractable for large network instances. We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach, which is able to learn parameters of the effective spreading model given only limited information on the activation times of nodes in the network. The popular Independent Cascade model is used to illustrate our approach. We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model. We develop a systematic procedure for learning a mixture of models which further improves the prediction quality.