论文标题
计算一般相对论的无力电动力学:ii。数值扩散率的表征
Computational General Relativistic Force-Free Electrodynamics: II. Characterization of Numerical Diffusivity
论文作者
论文摘要
科学代码是理论与实验之间必不可少的联系。在(Astro)等离子体物理学中,这种数值工具是进入宇宙最极端能量流动的一个窗口。 Maxwell方程的离散化 - 使高度磁化(Astro)物理等离子体适合其数值建模 - 引入了数值扩散。它充当耗散的根源,独立于系统的物理成分。了解科学代码的数值扩散是对其可靠性进行分类的关键。它给出了特定的限制,其中数值实验的结果是物理的。我们旨在通过校准和比较文献中的其他策略来量化和表征我们最近开发的数值工具的数值扩散特性,以模拟一般无相对论的无力电动力学。我们的代码正确建模了高度磁化等离子体的波平滑波。我们在当前的表和撕裂模式不稳定性的背景下评估了一般无相对论的无力电动力学的限制。我们确定与磁场平行的电流($ \ MATHBF {J} _ \ Parallel $),并结合电流范围内的一般相对论无力电动力学的分解,从而损害了电阻不稳定性的物理建模。我们发现,每个特征的特征大小至少八个数值单元格(例如,血浆波或当前纸的横向宽度的波长)在数值和物理起源的电阻率之间找到一致性。无力电流的高阶离散化使我们能够为(平滑)等离子体波动力学提供几乎理想的收敛顺序。电阻层的物理建模需要合适的当前处方或用于$ \ Mathbf {J} _ \ Parallel $的演变的子网格建模。
Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe's most extreme flows of energy. The discretization of Maxwell's equations - needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling - introduces numerical diffusion. It acts as a source of dissipation independent of the system's physical constituents. Understanding the numerical diffusion of scientific codes is the key to classify their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics, by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field ($\mathbf{j}_\parallel$), in combination with the break-down of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g. the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of $\mathbf{j}_\parallel$.