论文标题
$α$ - $ z $rényi相对熵的数据处理不平等的平等条件
Equality conditions of Data Processing Inequality for $α$-$z$ Rényi relative entropies
论文作者
论文摘要
$α$ - $ z $rényi相对熵是一个两参数的rényi相对熵家族,是经典$α$-Rényi相对熵的量子概括。在\ cite {zhang20cfl}中,我们确定数据处理不等式(DPI)有效的$(α,z)$的全部范围。在本文中,我们为DPI中的平等提供代数条件。对于全范围的参数$(α,z)$,我们提供必要的条件和足够的条件。对于大多数参数,我们提供等效条件。这概括并加强了\ cite {lrd17dpi}中Leditzky,Rouz {é}和Datta的结果。
The $α$-$z$ Rényi relative entropies are a two-parameter family of Rényi relative entropies that are quantum generalizations of the classical $α$-Rényi relative entropies. In \cite{zhang20CFL} we decided the full range of $(α,z)$ for which the Data Processing Inequality (DPI) is valid. In this paper we give algebraic conditions for the equality in DPI. For the full range of parameters $(α,z)$, we give necessary conditions and sufficient conditions. For most parameters we give equivalent conditions. This generalizes and strengthens the results of Leditzky, Rouz{é} and Datta in \cite{LRD17DPI}.