论文标题
播种第二颗星-II。 CEMP星形从微弱的超新星富含
Seeding the second star -- II. CEMP star formation enriched from faint supernovae
论文作者
论文摘要
碳增强的金属贫困(CEMP)恒星是持有早期恒星化学富集记录的活化石。在这项工作中,我们考虑了所有相关的冷却/加热过程和化学反应以及灰尘晶粒的生长,我们对第一代无金属(POP III)恒星的富集(SN)进行了一组数值模拟。我们第一次采用祖细胞$ m _ {\ rm popiii} = 13 $ - $ 80 \ {\ rm m} _ {\ bigodot} $,产生c-增强丰度模式($ {$ {\ rm [c/fe] = 4.57 $ - $ 4.75 $)的混合,我们第一次采用微弱的SN模型。该模型还考虑了灰尘晶粒的形成和破坏。我们发现,SN弹出的金属可以部分被相同的暗物质迷你船和丰富的云$ a({\ rm c})= 3.80 $ - $ 5.06 $低于观察到的cemp stars($ a($ a)($ rm c c} \ g g g gr的量,由于广泛的后备,SNE比正常的核心爆发SNE小。我们还发现,云碎片是由碳质晶粒从$ m _ {\ rm popiii} = 13 \ {\ rm m} _ {\ bigodot} $诱导的,即使以最低的铁丰度$ {\ rm rm [fe/h]} \ sim -9 $ -9 $ -9 $。这导致了低质量恒星的形成,这些``Giga Metal-Poor''星可以在当今的宇宙之前生存,并且可以通过未来的观察发现。
Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generation of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses $M_{\rm PopIII} = 13$--$80 \ {\rm M}_{\bigodot}$, which yield C-enhanced abundance patterns (${\rm [C/Fe]} = 4.57$--$4.75$) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud $A({\rm C}) = 3.80$--$5.06$ is lower than the abundance range of observed CEMP stars ($A({\rm C}) \gtrsim 6$) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $M_{\rm PopIII} = 13 \ {\rm M}_{\bigodot}$ even with the lowest iron abundance ${\rm [Fe/H]} \sim -9$. This leads to the formation of low-mass stars, and these ``giga metal-poor'' stars can survive until the present-day Universe and may be found by future observations.