论文标题
使用广义量子测量来量化信息提取
Quantifying Information Extraction using Generalized Quantum Measurements
论文作者
论文摘要
观察性熵被解释为与系统进行测量的观察者的不确定性。到目前为止,使这种解释成为可能的属性取决于理想的投射测量的假设。我们表明,即使在考虑广义测量值时,相同的属性也存在。因此,解释仍然存在:观察性熵是一个明确定义的量词,确定了给定的一系列测量在信息提取中的影响力。这个广义框架允许研究间接测量方案的性能,即使用探针的框架。使用此框架,我们首先分析有限维探针的局限性。然后,我们研究冯·诺伊曼测量方案的几种情况,其中探针是以其位置为特征的经典粒子。最后,我们讨论观察性熵作为量子状态推理的工具。进一步开发,该框架可以在量子信息处理中找到应用程序。例如,它可以帮助确定量子记忆中的最佳读出程序,并提供适应性的测量策略替代量子状态层析成像。
Observational entropy is interpreted as the uncertainty an observer making measurements associates with a system. So far, properties that make such an interpretation possible rely on the assumption of ideal projective measurements. We show that the same properties hold even when considering generalized measurements. Thus, the interpretation still holds: Observational entropy is a well-defined quantifier determining how influential a given series of measurements is in information extraction. This generalized framework allows for the study of the performance of indirect measurement schemes, which are those using a probe. Using this framework, we first analyze the limitations of a finite-dimensional probe. Then we study several scenarios of the von Neumann measurement scheme, in which the probe is a classical particle characterized by its position. Finally, we discuss observational entropy as a tool for quantum state inference. Further developed, this framework could find applications in quantum information processing. For example, it could help in determining the best read-out procedures from quantum memories and to provide adaptive measurement strategies alternative to quantum state tomography.