论文标题

教授神经网络以产生快速的Sunyaev Zel'Dovich地图

Teaching neural networks to generate Fast Sunyaev Zel'dovich Maps

论文作者

Thiele, Leander, Villaescusa-Navarro, Francisco, Spergel, David N., Nelson, Dylan, Pillepich, Annalisa

论文摘要

Thermal Sunyaev-Zel'Dovich(TSZ)和运动型Sunyaev-Zel'Dovich(KSZ)效应效果追踪了热宇宙中电子压力和动量的分布。这些可观察的物品取决于丰富的多尺度物理,因此,理想情况下,模拟地图应基于捕获诸如冷却,恒星形成和其他复杂过程之类的重型反馈效应的计算。在本文中,我们使用U-NET结构训练深卷积神经网络,可从暗物质的三维分布到〜100 kpc分辨率的电子密度,动量和压力。这些网络通过TNG300卷和一组来自Illustristng Project的群集缩放模拟的组合进行了训练。与最先进的半分析模型相比,神经网能够重现模拟的功率谱,单点概率分布函数,双光谱和互相关系数。我们的方法提供了一条途径,以捕获银河形成的完整宇宙学水动力学模拟的丰富性,并具有分析计算的速度。

The thermal Sunyaev-Zel'dovich (tSZ) and the kinematic Sunyaev-Zel'dovich (kSZ) effects trace the distribution of electron pressure and momentum in the hot Universe. These observables depend on rich multi-scale physics, thus, simulated maps should ideally be based on calculations that capture baryonic feedback effects such as cooling, star formation, and other complex processes. In this paper, we train deep convolutional neural networks with a U-Net architecture to map from the three-dimensional distribution of dark matter to electron density, momentum and pressure at ~ 100 kpc resolution. These networks are trained on a combination of the TNG300 volume and a set of cluster zoom-in simulations from the IllustrisTNG project. The neural nets are able to reproduce the power spectrum, one-point probability distribution function, bispectrum, and cross-correlation coefficients of the simulations more accurately than the state-of-the-art semi-analytical models. Our approach offers a route to capture the richness of a full cosmological hydrodynamical simulation of galaxy formation with the speed of an analytical calculation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源