论文标题

对称力量的双曲和特殊性

Hyperbolicity and Specialness of Symmetric Powers

论文作者

Cadorel, Benoit, Campana, Frédéric, Rousseau, Erwan

论文摘要

受到Arapura和Archava的复杂投影量X的对称能力XM的Kodaira尺寸的计算,我们研究了它们的分析和代数双曲线特性。首先,我们显示XM是特殊的,并且仅在X是特殊时(当X的核心为曲线时)。然后,我们在K3表面的(suf-Fiper-Hig)对称能力和曲线产物中构建密集的整个曲线。我们还基于喷气差束的阳性给出标准,这意味着对称能力的伪用力。作为一种应用,我们获得了足够高的通用投射超壁面的对称能力的Kobayashi双曲线。在代数方面,我们给出一个标准,暗示着Codimension $ \ le $ n -2的对称力量的子变量是一般类型。这特别适用于具有足够的cotangent束的品种。最后,基于公制方法,我们研究球人的对称能力。

Inspired by the computation of the Kodaira dimension of symmetric powers Xm of a complex projective variety X of dimension n $\ge$ 2 by Arapura and Archava, we study their analytic and algebraic hyperbolic properties. First we show that Xm is special if and only if X is special (except when the core of X is a curve). Then we construct dense entire curves in (suf-ficiently hig) symmetric powers of K3 surfaces and product of curves. We also give a criterion based on the positivity of jet differentials bundles that implies pseudo-hyperbolicity of symmetric powers. As an application, we obtain the Kobayashi hyperbolicity of symmetric powers of generic projective hypersur-faces of sufficiently high degree. On the algebraic side, we give a criterion implying that subvarieties of codimension $\le$ n -- 2 of symmetric powers are of general type. This applies in particular to varieties with ample cotangent bundles. Finally, based on a metric approach we study symmetric powers of ball quotients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源