论文标题

在目标的随机分布中搜索离散分数布朗运动的效率

Search efficiency of discrete fractional Brownian motion in a random distribution of targets

论文作者

Khadem, S. Mohsen J., Klapp, Sabine H. L., Klages, Rainer

论文摘要

在许多科学分支中,搜索随机分布目标的效率是一个突出的问题。对于Lévy步行的随机过程,在搜索固有和外在环境参数的变化下提出了特定的最佳效率范围。在本文中,我们将布朗运动作为搜索过程进行研究,在参数变化下,从子到正常到超扩散产生了所有三种基本类型的扩散类型。与Lévy步行相反,布朗尼的分数运动定义了一个高斯随机过程,功率定律记忆分别产生了反持续性的,持续的运动。按时间差异分数布朗运动在目标的均匀随机分布中对搜索进行搜索的计算机模拟表明,最大化搜索效率敏感地取决于效率的定义,固有和外部参数的变化,目标的感知,目标的类型,无论是检测一个或多个目标条件的选择。在我们的模拟中,我们发现不同的搜索场景有利于不同的运动模式来优化搜索成功,无视所有搜索情况的普遍性。我们的一些数值结果由简单的分析模型来解释。在证明分数布朗运动的搜索是一个真正复杂的过程之后,我们提出了一个基于对不同搜索场景进行分类的概念框架。这种方法将莱维步道的搜索优化作为特殊情况。

Efficiency of search for randomly distributed targets is a prominent problem in many branches of the sciences. For the stochastic process of Lévy walks, a specific range of optimal efficiencies was suggested under variation of search intrinsic and extrinsic environmental parameters. In this article, we study fractional Brownian motion as a search process, which under parameter variation generates all three basic types of diffusion, from sub- to normal to superdiffusion. In contrast to Lévy walks, fractional Brownian motion defines a Gaussian stochastic process with power law memory yielding anti-persistent, respectively persistent motion. Computer simulations of search by time-discrete fractional Brownian motion in a uniformly random distribution of targets show that maximising search efficiencies sensitively depends on the definition of efficiency, the variation of both intrinsic and extrinsic parameters, the perception of targets, the type of targets, whether to detect only one or many of them, and the choice of boundary conditions. In our simulations we find that different search scenarios favour different modes of motion for optimising search success, defying a universality across all search situations. Some of our numerical results are explained by a simple analytical model. Having demonstrated that search by fractional Brownian motion is a truly complex process, we propose an over-arching conceptual framework based on classifying different search scenarios. This approach incorporates search optimisation by Lévy walks as a special case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源